Solvent-Free Synthesis of Uniform MOF Shell-Derived Carbon Confined SnO2 /Co Nanocubes for Highly Reversible Lithium Storage.

نویسندگان

  • Qiu He
  • Jinshuai Liu
  • Zhaohuai Li
  • Qi Li
  • Lin Xu
  • Baoxuan Zhang
  • Jiashen Meng
  • Yuzhu Wu
  • Liqiang Mai
چکیده

Tin dioxide (SnO2 ) has attracted much attention in lithium-ion batteries (LIBs) due to its abundant source, low cost, and high theoretical capacity. However, the large volume variation, irreversible conversion reaction limit its further practical application in next-generation LIBs. Here, a novel solvent-free approach to construct uniform metal-organic framework (MOF) shell-derived carbon confined SnO2 /Co (SnO2 /Co@C) nanocubes via a two-step heat treatment is developed. In particular, MOF-coated CoSnO3 hollow nanocubes are for the first time synthesized as the intermediate product by an extremely simple thermal solid-phase reaction, which is further developed as a general strategy to successfully obtain other uniform MOF-coated metal oxides. The as-synthesized SnO2 /Co@C nanocubes, when tested as LIB anodes, exhibit a highly reversible discharge capacity of 800 mAh g-1 after 100 cycles at 200 mA g-1 and excellent cycling stability with a retained capacity of 400 mAh g-1 after 1800 cycles at 5 A g-1 . The experimental analyses demonstrate that these excellent performances are mainly ascribed to the delicate structure and a synergistic effect between Co and SnO2 . This facile synthetic approach will greatly contribute to the development of functional metal oxide-based and MOF-assisted nanostructures in many frontier applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition.

SnO2 nanowires directly grown on flexible substrates can be a good electrode for a lithium ion battery. However, Sn-based (metal Sn or SnO2) anode materials always suffer from poor stability due to a large volume expansion during cycling. In this work, we utilize atomic layer deposition (ALD) to surface engineer SnO2 nanowires, resulting in a new type of hollowed SnO2-in-TiO2 wire-in-tube nanos...

متن کامل

Oxalate-assisted formation of uniform carbon-confined SnO2 nanotubes with enhanced lithium storage.

SnO2 nanotubes are synthesized via an oxalate-assisted "redox etching and precipitating" route between MnOOH nanowires and Sn2+ ions. The addition of oxalate is found to be crucial to guide the formation of uniform SnO2 nanotubes. To further improve the conductivity and stability, the as-obtained SnO2 nanotubes are coated with a thin carbon layer. The resulting carbon-confined SnO2 nanotubes po...

متن کامل

One-pot synthesis of uniform carbon-coated MoO(2) nanospheres for high-rate reversible lithium storage.

Uniform carbon-coated MoO(2) nanospheres assembled from small primary nanocrystals have been synthesized by a one-pot hydrothermal method followed by thermal annealing. Because of the desirable structural features, these core-shell MoO(2)@carbon nanospheres exhibit significantly improved electrochemical performance for high-rate reversible lithium storage.

متن کامل

Enhanced charge-discharge properties of SnO2 nanocrystallites in confined carbon nanospace.

Almost perfect embedding of SnO2 nanocrystallites in carbon nanopores was achieved by in situ synthesis using vaporized SnCl2 and silica opal-derived nanoporous carbons. The reversibility of SnO2-Sn conversion and Sn-Li alloying/de-alloying reactions was greatly enhanced by the confinement in regulated carbon nanospace.

متن کامل

Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries

SnO2 nanoparticles were dispersed on graphene nanosheets through a solvothermal approach using ethylene glycol as the solvent. The uniform distribution of SnO2 nanoparticles on graphene nanosheets has been confirmed by scanning electron microscopy and transmission electron microscopy. The particle size of SnO2 was determined to be around 5 nm. The as-synthesized SnO2/graphene nanocomposite exhi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 13 37  شماره 

صفحات  -

تاریخ انتشار 2017